If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=x^2/(3600-60x)
We move all terms to the left:
20-(x^2/(3600-60x))=0
Domain of the equation: (3600-60x))!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-60x)!=-3600
x!=-3600/1
x!=-3600
x∈R
-(x^2/(-60x+3600))+20=0
We multiply all the terms by the denominator
-(x^2+20*(-60x+3600))=0
We calculate terms in parentheses: -(x^2+20*(-60x+3600)), so:We get rid of parentheses
x^2+20*(-60x+3600)
We multiply parentheses
x^2-1200x+72000
Back to the equation:
-(x^2-1200x+72000)
-x^2+1200x-72000=0
We add all the numbers together, and all the variables
-1x^2+1200x-72000=0
a = -1; b = 1200; c = -72000;
Δ = b2-4ac
Δ = 12002-4·(-1)·(-72000)
Δ = 1152000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152000}=\sqrt{230400*5}=\sqrt{230400}*\sqrt{5}=480\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1200)-480\sqrt{5}}{2*-1}=\frac{-1200-480\sqrt{5}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1200)+480\sqrt{5}}{2*-1}=\frac{-1200+480\sqrt{5}}{-2} $
| 9.8x+22=3.8.x+20 | | a+26/4=-22 | | 7/2(x-2)=-14/5 | | -y6-3=-11 | | 8w=10 | | n10=40 | | x-0,3x=150 | | -6x+16=4x-6x-24 | | -2n=-8+4(n-3) | | 180=156+24-x | | 3x-4-5x=18 | | 7(3x+4)=8(2x=5)=13 | | 4x+3(4x+7)=4(7x=3)-3 | | 90=26+8+7x | | x1.5=9x | | Xx1.5=9X | | 7w-15=13 | | 180=26+8x+7 | | 2x/3+30=(x+15) | | 6x^2+5x-6x=0 | | 2x/3+30=x+15 | | X-10y=-59 | | 90=26+(x+8) | | 9y+2+112=360 | | p-19=24 | | 9y+2+112=180 | | 52x-8=125. | | 2p+8=5p-4 | | 3(x+)=x+4 | | 5x+3+3x+1=180 | | 8x-3=13x+13 | | 2x-8/5+7/10=3x/10-3/5 |